Garnet-Poly(ε-caprolactone-<i>co</i>-trimethylene carbonate) Polymer-in-Ceramic Composite Electrolyte for All-Solid-State Lithium-Ion Batteries

نویسندگان

چکیده

A composite electrolyte based on a garnet (LLZO) and polyester-based co-polymer (80:20 ε-caprolactone (CL)-trimethylene carbonate, PCL-PTMC with LiTFSI salt) is prepared. Integrating the merits of both ceramic electrolytes expected to address poor ionic conductivity high interfacial resistance in solid-state lithium-ion batteries. The 80 wt % LLZO 20 polymer (PCL-PTMC lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at 72:28 %) exhibited Li-ion 1.31 × 10–4 S/cm transference number (tLi+) 0.84 60 °C, notably higher than those pristine electrolyte. prepared also an electrochemical stability up 5.4 V vs Li+/Li. interface between LiFePO4 (LFP) cathode was improved by direct incorporation as binder coating. Li/composite electrolyte/LFP cell provided discharge capacity ca. 140 mAh/g suitable cycling 55 °C after 40 cycles. This study clearly suggests that this type amorphous polymers can be applied polymer-in-ceramic for realization advanced all-solid-state

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.

Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current colle...

متن کامل

Advanced gel polymer electrolyte for lithium-ion polymer batteries

In order to keep abreast with the rapid development of portable electronic equipment, improving the performance of polymer electrolytes has therefore become our goal of research. This work improved performance of Li-ion polymer batteries through advanced gel polymer electrolytes (GPEs). Comparing with liquid type Electrolyte, Gel type Polymer Electrolyte (GPE) had the advantage of a wide variet...

متن کامل

Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries

The supply and the management of the energy are particularly at the centre of our daily concerns and represent a socio-economic priority. Indeed, while cars use fossil fuel as the main source of energy for over a century, the depletion of the oil reserves and the necessity to reduce the carbon dioxide emissions, stimulate the development of electric vehicles. Therefore, one of the main challeng...

متن کامل

Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte.

Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) a...

متن کامل

Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS applied energy materials

سال: 2021

ISSN: ['2574-0962']

DOI: https://doi.org/10.1021/acsaem.0c03098